Package: nbhdmodel 0.1.0.9000
nbhdmodel: Neighborhood Modeling and Analysis
Functionality for fitting neighborhood models of McCartan, Brown, and Imai <arxiv:2110.14014>. The core methodology is described in the paper and can be implemented with any tool that can fit generalized linear mixed models (GLMMs). However, some of the preprocessing necessary to set up the GLMM can be onerous. In addition to providing a specialized GLMM routine, this package provides several preprocessing functions that, while not completely general, should be useful for others performing these kinds of analyses.
Authors:
nbhdmodel_0.1.0.9000.tar.gz
nbhdmodel_0.1.0.9000.zip(r-4.5)nbhdmodel_0.1.0.9000.zip(r-4.4)nbhdmodel_0.1.0.9000.zip(r-4.3)
nbhdmodel_0.1.0.9000.tgz(r-4.4-x86_64)nbhdmodel_0.1.0.9000.tgz(r-4.4-arm64)nbhdmodel_0.1.0.9000.tgz(r-4.3-x86_64)nbhdmodel_0.1.0.9000.tgz(r-4.3-arm64)
nbhdmodel_0.1.0.9000.tar.gz(r-4.5-noble)nbhdmodel_0.1.0.9000.tar.gz(r-4.4-noble)
nbhdmodel.pdf |nbhdmodel.html✨
nbhdmodel/json (API)
# Install 'nbhdmodel' in R: |
install.packages('nbhdmodel', repos = c('https://corymccartan.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/corymccartan/nbhdmodel/issues
Last updated 9 months agofrom:6e7d39e648. Checks:OK: 3 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win-x86_64 | OK | Oct 26 2024 |
R-4.5-linux-x86_64 | OK | Oct 26 2024 |
R-4.4-win-x86_64 | NOTE | Oct 26 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 26 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 26 2024 |
R-4.3-win-x86_64 | NOTE | Oct 26 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 26 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 26 2024 |
Exports:binned_residcalc_indiv_framefastAUCfixeflocal_areaneighborhood_modelpost_inclranefsimulate_neighborhood
Dependencies:abindbackportsBHbootcallrcheckmateclassclassIntclicolorspacecpp11DBIdescdistributionaldplyre1071fansifarverfastmatchgenericsggplot2gluegridExtragtableinlineisobandKernSmoothlabelinglatticelifecyclelme4loomagrittrMASSMatrixmatrixStatsmgcvminqamunsellnlmenloptrnumDerivpillarpkgbuildpkgconfigposteriorprocessxproxypsQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelrlangrstans2scalessfStanHeadersstringistringrtensorAtibbletidyselectunitsutf8vctrsviridisLitewithrwk
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Binned Residual Plot | binned_resid |
Create a model data frame for an individual respondent | calc_indiv_frame |
Get Posterior Mean of Effective Block Distance | eff_dist |
Calculate AUC | fastAUC |
Filter block data to a radius of a FIPS code | local_area |
Functions for working with neighborhood fits | as.data.frame.nbhd_fit as.matrix.nbhd_fit coef.nbhd_fit fitted.nbhd_fit fixef.nbhd_fit nbhd_fit ranef.nbhd_fit residuals.nbhd_fit summary.nbhd_fit |
Fit the Neighborhood Model | neighborhood_model |
Plot coefficient estimates | plot.nbhd_fit |
Get Posterior Block Inclusion Probabilities | post_incl |
Simulate a neighborhood for a respondent | simulate_neighborhood |